$$e^+e^- o \widetilde{t}_1\overline{\widetilde{t}_1} \to c\widetilde{\chi}_0^1\overline{c}\widetilde{\chi}_0^1$$
 Update-9May-05

C. Milsténe, A. Freitas, M. Carena – Fermilab; A. Finch, A. Sopczak – Lancaster; H. Nowak –DESY

LCWS05: http://theory.fnal.gov/people/freitas/lcws/milstene.pdf

- In the project are involved both experimentalists and theorists for the span of the channels under study to SUSY-MSSM and Cosmology, at once, where the neutralino is a suitable candidate for dark matter
- The c-tagging puts stringent conditions on the Vector Detector which could be used as a detector benchmark

Simulation Characteristics

- Background generated in the framework:
 Pythia + Simdet + Circe
 - a) Beamstrahlung & Bremstrahlung Simdet code implementation by A. Finch
 - b) Stop to neutralino non-standard Pythia code of A. Sopczak.
- Signal and Background generated in each channel in conjunction to the cross-sections:

Signal And Background Cross-Sections (pb)

Process t t	Beamst/ISR	FREITAS			
		unpol	L-pol	R-pol	
M (t̃=120)	yes	0.2802			
M (t=140)	yes	0.21670	0.19635	0.23714	
M (t̃=180)	Yes	0.10532	0.09532	0.11527	
M (t=220)	yes	0.02487	0.02253	0.02720	

The Events have been produced with Beamstrahlung

σ-normalizations without.

Process	Pythia	Beamst/ISR	GRACE		
	Isub		Unpol L-pol R-pol		
ww	7.38 - 25	no	7.6141 15.172 0.05624		
Wenu	5.30 - ~36	no	6.142 9.268 3.016		
ZZ	0.402 - 22	no	0.44000 0.6250 0.25501		
eeZ	6.90 - 35	no	7.64 8.42 6.72		
tt	- 1	no	0.56651 0.79536 0.33765		
qq*	- 1	yes	13.974 18.345 10.941		
γγ-Beamst.	782 - A.F	yes			
2-photon	154 - A.F	yes			

Selection
$$e^+e^- \rightarrow \tilde{t}_1\overline{\tilde{t}_1} \rightarrow c\tilde{\chi}_0^1 \bar{c}\tilde{\chi}_0^1$$

- Pythia with Simdet/Tesla was used for the simulations of both signal and background with CIRCE for the beamstrahlung.
- •A short list of the sequential cuts applied as a preselection first, allowed larger samples to be produced and the cut refined at selection stage.

Pre-selection:

- •4<Number of Charged tracks<50
- •Pt> 5 GeV
- • $\cos\theta_{Thrust}$ <0.8
- $\bullet |P_{I,tot}/P| < 0.9$
- •E_{vis}<380 GeV
- •M(inv)<200 GeV

Selection:	LCWS05	\rightarrow		NOW: <u>c-tagging (T. Kuhl)</u>
•Njets =2		\rightarrow		2
Cos (A-copl	anarity) <0.9	\rightarrow		0.95
•cosθ _{Thrust} <0	.7, P _t >12 revisit	ed _: →		$\cos\theta_{Thrust}$ <0.7 , P _t >12 revisited
•E _{vis} <200Ge	V	\rightarrow		E _{vis} <200GeV
•2000 GeV ²	< Minv ² _{jets} < 900	0 GeV ²	\rightarrow	3500 GeV ² < Minv ² _{jets} < 8000 GeV ²

C. Milsténe

Selection: The Background Rejection LCWS05 && Now

Background	% Left - End Presel	NumberGen. Selection (LCWS05)	NumberGen. Selection (now)	500 1	Sel. – For	Num I End S 500 f (NOV	Sel. – For b^-1
γγ- Beamst.	0.06%	2.2 Millions	4.5 Millions	0.	200.	0.	<u>88</u> .5
2- photon	0.04%	1.0 M	1.0 M	0.	77.	0.	77.
zz	9%	0.03 M	0.03 M	30.	220.	36.	263.
qq	0.09%	0.35 M	0.35 M	10.	200.	8.	<u>160.</u>
ww	1.45%	0.21 M	0.21 M	10.	181.	8.	<u>145.</u>
tt	1.36%	0.18 M	0.18 M	25.	400.	25.	400.
wenu	25.70%	0.21 M	0.21 M	624	9123.	371	<u>5424.</u>
eez	0.06%	0.21 M	0.21 M	3	55.	2	<u>36.</u>

<u>Improvements</u>:in Background rejection comes from the <u>ctag</u> implementation, except in the γγ- Beamst. which comes from <u>increased statistics</u>, the rejection provided by the pt cut. The zz rejection is very slightly worse

C. Milsténe

Selection: The Signal

M (t)	% Signal	Num. Gener.	Num. Signal
	End	Selection	End Sel-For500fb^-1
	Preselection		
<u>140GeV</u>			
Δm=20	65.8%	50 K	20080 - <mark>39950</mark>
Δm=40	68.2%	50 K	18440 - <mark>20380</mark>
Δm=80	50.1%	50 K	12920 - <mark>19890</mark>
<u>180GeV</u>			
Δm=20.	67.2%	25 K	14440 - <mark>15430</mark>
Δm=40	72.3%	25 K	9753 -11230
Δm=80	63.7%	25 K	9178
<u>220</u>			
<u>GeV</u>	66.1%	10K	4608
Δm=20	74.1%	10K	2578
Δm=40	72.8%	10k	2734
Δm=80			

In Red Improvements Due to:

c-tagging

+.

Relaxed A-coplanarity Cut 0.95 (instead of 0.9)

C-tagging-The Principle

A Vertex Identification followed by a Neural Network application

Vertex Identification:

As a maximum in track overlapping (product of probability density tubes defined the track parameters)

3 cases:

Case 1) Only a primary Vertex

Case 2) 1 secondary vertex

Case 3) >1 secondary vertex

Neural Network (NN):

data: 255000 stops, Mstop=120-220; Dm=5,10, 20 GeV 240000 Wev, the most resilient background

C-tagging-Neural Network Input

- Vertex Case 1:NN Input variables
- *Impact parameter* significance (impact parameter/error) of the 2 most significant tracks in the r-Φ plane && their Impact parameters.
- The impact parameter significance & Impact parameters of the 2 tracks in z
- Their momenta
- The joint probability in r- Φ & z
- Vertex Case 2: NN Input variables (all of Case 1+below)
 - Decay Length significance of the secondary vertex && Decay Length
 - Momentum of all tracks associated to the secondary vertex && Multiplicity
- Pt corrected mass of secondary vertex (corrected for neutral hadrons&v's), the pt of the decay products perpendicular to the flight direction (between primary && secondary Vertex) && joint probability in r-Φ and z
- •<u>Vertex Case 3</u>: 2 secondary vertices, the tracks are assigned to the vertex closest to the primary vertex and the NN input variables are those of case 2

Discovery Reach

Δm	Eff.	Eff.	Eff.	Eff.	
	Mstop =	Mstop=	Mstop=	Mstop=	
	120GeV	140GeV	180GeV	220GeV	
5 GeV	2.71%- 23.5%	1.15%- 20.23%	0.30%- 14%	0.11%- 8.5%	
10 GeV	20.3%- 34.53	21.1%- 35.04%	19.1%- 34.6%	35.3%- 69%	
20 GeV	19.0%- 33%	18.5%	27.4%	37.1%	
40 GeV		10.2%	18.5%	20.7%	
80 GeV		11.9%	18.3%	22.0%	

<u>In Green</u>: with c-tagging <u>alone</u>- the actual pt cut of12GeV "against" the 2-photons being now the most harmful for low Dm signal (should be replaced)

Conclusions / Outlook

- C-tagging implemented
- Tuning of c-tagging for small Dm
- C-tagging reduced largest background Wev by half (tuned c-tagging)
- Other cut relaxed: acoplanarity
- Next: optimize signal vs background, use of Iterative Discriminant Analysis (IDA)
- Redo for different vertex detectors (material/design)
- Focus on very small Dm (far beyond hadron colliders)
- Further interpretations for cosmological relevant parameter combinations (Ayres, Marcela)
- Longer term: TESLA/SLAC detector comparisons.
- GEANT4 simulations and/or other fast-simulations.

Backup

Background ()

Remark:

```
In the Beamstrahlung are included processes
131,135,11,12,13,28,53,68
In the Bremstrhalung
11,12,13,28,53,68,131,132,135,136,137,138,139,140....
```

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.